Structure and Magnetic Properties of (*meso*-Tetraphenylporphinato)manganese(III) Pentacyanopropenide, $[Mn^{III}TPP]^+[C_3(CN)_5]^-$. An Unusual Asymmetric Bridge-Bonding Mode for μ - $[C_3(CN)_5]^-$

Michelle L. Yates,[†] Atta M. Arif,[†] Jamie L. Manson,[†] Benjamin A. Kalm,[†] Brian M. Burkhart,[‡] and Joel S. Miller^{*,†}

Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, and Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203

Received November 5, 1997

To understand the detailed magnetic properties of the $[MnTPP]^+[TCNE]^{\bullet-1}$ (TPP = *meso*-tetraphenylporphinato) family of molecule-based magnets, it is necessary to study related six-coordinate $[Mn^{III}TPP]^+$ bound in the axial positions by diamagnetic nitrile groups in order to model the Mn(III) site. We sought to take advantage of the potential of diamagnetic $[C_3(CN)_5]^-$ to bridge between two metal sites,^{2c} although it frequently serves as an unbound counterion.^{2a,b} Hence, $[Mn^{III}TPP]^+[C_3(CN)_5]^{\bullet-3,4}$ was prepared.

Crystals of $[MnTPP]^+[C_3(CN)_5]^- xCH_2Cl_2$ were grown from dichloromethane.⁵ $[MnTPP]^+[C_3(CN)_5]^-$, Figure 1, forms parallel $1-D \cdots D^+A^-D^+A^- \cdots$ chains akin to that reported for $[MnTPP]^+$ $[TCNE]^-$, Figure 2.^{1a,c} However, the cations do not lie parallel to one another but cant back and forth by $\sim 20^\circ$ (Figure 2) with respect to the chain axis. In contrast to previously reported structures of the cation, $[MnTPP]^+$ is significantly puckered into a saddle shape as if the porphyrin ring were sterically encum-

- [‡] Hauptman-Woodward Medical Research Institute.
- (a) Miller, J. S.; Calabrese, J. C.; McLean, R. S.; Epstein, A. J. Adv. Mater. 1992, 4, 498. (b) Zhou, P.; Morin, B. G.; Epstein, A. J.; McLean, R. S.; Miller, J. S. J. Appl. Phys. 1993, 73, 6569. (c) Burkhart, B. M.; Morin, B. G.; Epstein, A. J.; Calabrese, J. C.; Miller J. S.; Sundaralingham, M. Submitted for publication.
- (a) Miller, J. S.; Calabrese, J. C.; Rommelmann, H.; Chittipeddi, S.; Zhang, J. H.; Reiff, W. M.; Epstein, A. J. J. Am. Chem. Soc. 1987, 109, 769. Giraudon, J.-M.; Guerchais, J.-E.; Sala-Pala, J.; Toupet, L. J. Chem. Soc., Chem. Commun. 1988, 921. Giraudon, J. M.; Sala-Pala, J.; Guerchais, J. E.; Toupet, L. Inorg. Chem. 1991, 30, 891. Barlow, S.; O'Hare, D. Acta Crystallogr. 1996, C52, 578. Bertolasi, V.; Gilli, G. Acta Crystallogr. 1983, C39, 1242. Jensen, W. P.; Robertson, R. A. Inorg. Chim. Acta 1981, 50, 189. (b) Sim, G. A.; Woodhouse, D. I.; Knox, G. R. J. Chem. Soc., Dalton Trans. 1979, 629. (c) Bruce, M. I.; Wallis, R. C.; Skelton, B. K.; White, A. H. J. Chem. Soc., Dalton Trans. 1981, 2205. Olmstead, M. M.; Speier, G.; Szabo, L. J. Chem. Soc., Chem. Commun. 1994, 541.
- (3) A solution of [Mn^{III}TPP]Cl (200 mg, 28.4 mmol) dissolved in 25 mL of dichloromethane was added dropwise to a slurry of equimolar Ag[C₃-(CN)₅]⁴ in 25 mL of dichloromethane and stirred for 3 days. The reaction mixture was then filtered through diatomaceous earth to remove all traces of AgCl. The solution was layered with ~25 mL of mixed hexanes and left to sit undisturbed for ~2 weeks. The black crystals which formed were stored in this solution to prevent solvent loss. IR, v_{CN} (Nujol): 2201(m), 1494(s) cm⁻¹.
- (4) Middleton, W. J.; Little, E. L.; Coffman, D. D.; Engelhardt, V. A. J. Am. Chem. Soc. 1958, 80, 2795.
- (5) Crystal data for C₅₄H₃₂Cl₄MnN₅: M_r = 1003.6, orthorhombic Pbca, a = 21.384(6) Å, b = 17.425(10) Å, c = 26.048(10) Å, V = 9706(7) Å³, Z = 8, D_c = 1.257 Mg/m³, λ = 0.710 73 Å, crystal size 0.44 × 0.25 × 0.16 mm, T = -80 °C, 2Θ_{max} = 24°, R₁ = 0.0743, for 7612 independent reflections with I ≥ 4o(1). The structure was solved by the MOLEN (An Interactive Structure Solution Procedure; Enraf-Nonius: Delft, The Netherlands, 1990) software and the structure refined by full-matrix least-squares procedures using SHELXL97 (Sheldrick, G. M. SHELXL-97: A Program for the Refinement of Crystal Structures; University of Göttingen: Göttingen, Germany, 1997). The disorder in the dichloromethane solvent and in the [C₃(CN)₃]⁻ anion was discovered and modeled using the program CHAIN [Sack, J. S. J. Mol. Graph. 1988, 6, 224] on a graphics workstation. The minor component of the major form, and the dichloromethane solvents were restrained to their standard geometry.

Figure 1. ORTEP⁹ atom-labeling diagram showing the major (88%) (solid bonds) and minor (12%) (open bonds) orientation of the $[C_3(CN)_5]^-$. The phenyl groups have been omitted for clarity, and the thermal ellipsoids are at the 50% probability level.

Figure 2. Linear chain of the title complex illustrating the asymmetric μ -bonding of the anion as well as the unusual saddle shape of the [MnTPP]⁺ cation.

bered.^{1,6} The $Mn-N_{por}$ bond distance average of 1.977(10) Å is comparable to the 2.000(3) Å observed for $[MnTPP]^+[TCNE]^{-,1a,c}$ The axial Mn-N bond distance is 2.345 Å, which is comparable to that observed for [MnTPP][TCNE] (2.327 Å).^{1a,c}

The $[C_3(CN)_5]^-$ ligand is disordered over two orientations in a 88:12 ratio. These orientations are related by a rotation about the Mn···Mn chain. This disorder has also been observed for unbound $[C_3(CN)_5]^{-,2b}$ The anion is not planar and has a 6.4° dihedral angle about CBla–CBa–CAa–CAla and an 8.3° dihedral angle about CBla–CBa–CGa–CG2a for the major orientation. The mean C=N, C–CN, and C–CC bond distances are 1.134, 1.387, and 1.439 Å, as expected for a delocalized system. The C=N distance is not altered upon bonding to the

S0020-1669(97)01389-X CCC: \$15.00 © 1998 American Chemical Society Published on Web 02/19/1998

^{*} To whom correspondence should be addressed.

[†] University of Utah.

⁽⁶⁾ Brandon, E. J.; Yap, G. P. A.; Rheingold, A. L.; Arif, A.; Miller, J. S. Inorg. Chim. Acta 1995, 240, 515. Böhm, A.; Vazquez, C.; McLean, R. S.; Calabrese, J. C.; Kalm, S. E.; Manson, J. L.; Epstein, A. J.; Miller, J. S. Inorg. Chem. 1996, 35, 3083. Miller, J. S.; Vazquez, C.; Jones, N. L.; McLean, R. S.; Epstein, A. J. J. Mater. Chem. 1995, 5, 707. Sugiura, K.; Arif, A.; Rittenberg, D. K.; Schweizer, J.; Öhrstrom, L.; Epstein, A. J.; Miller, J. S. Chem. Eur. J. 1997, 3, 138.

Figure 3. Temperature dependence of the moment, μ_{eff} , of [Mn^{III}TPP]⁺[C₃(CN)₅]⁻ and the fit of the data to eq 1 with D = -4 K and g = 1.99.

Mn(III). The major and minor orientations lie at 69.4 and 72° angles to the MnN₄ plane with the two disordered components related by a 173° rotation about the Mn····Mn axis. [Mn^{III}-TPP]⁺[C₃(CN)₅]⁻ forms 1-D chains composed of alternating cations and anions with the [C₃(CN)₅]⁻ anion asymmetrically μ -bridging between cations. The anion N1 and N5 atoms bond to the Mn with C–N–Mn angles of 163.2 and 173.1°, averaging 168°, Figure 2.

The magnetic moment, μ_{eff} , of $[\text{Mn}^{\text{III}}\text{TPP}]^+[\text{C}_3(\text{CN})_5]^- x\text{CH}_2\text{Cl}_2$ (x = 1) is presented as a function of temperature between 2 and 300 K in Figure 3. The susceptibility can be fit by the Curie– Weiss expression, $\chi \propto (T - \Theta)^{-1}$, with a Θ of -0.5 ± 0.5 K. The observed room-temperature effective moment, $\mu_{\text{eff}} [\equiv (8\chi T)^{1/2}]$, is 4.88 μ_{B} , which is slightly reduced from the value of 4.90 μ_{B} , expected for an independent g = 2, S = 2 system,⁶ and reflects a slightly reduced g value of 1.99 or that x is slightly above one. The $\mu_{\text{eff}}(T)$ data can be fit to the S = 2 zero-field-splitting expression (using the Hamiltonian $H = DS_z^2 + g\mu_B \mathbf{H} \cdot \mathbf{S}$)

$$\mu^{2} = \frac{2g^{2}(e^{-D/T} + 4e^{-4D/T})}{1 + 2e^{-D/T} + 2e^{-4D/T}} + \frac{2g^{2}T(18 - 14e^{-D/T} - 4e^{-4D/T})}{3D(1 + 2e^{-D/T} + 2e^{-4D/T})}$$
(1)

where *D*, the zero-field-splitting parameter,⁷ is $-4.0 \text{ K} (-2.8 \text{ cm}^{-1})$, Figure 3. This value falls within the range of -2.6 to -4.3 K reported for five-coordinate MnTTP(Cl)^{7,8a,b,c} and MnTTP-(ClO₄)^{8b,d} as well as six-coordinate MnTPPCl(py)^{7,8b,c} and MnTPP-(1-methylimidazole)₂^{8d} and is also comparable to values obtained for hydrated MnOEP(X) (X = Cl, Br, OAc, ClO₄) complexes.^{8d} The lack of magnetic coupling and ordering for [Mn^{III}TPP]⁺[C₃(CN)₅)^{•-} but presence of strong coupling and ordering for the [Mn(porphyrin)]⁺[TCNE]⁻ family emphasizes the necessity to have the Mn(porphyrinate) bridged by spinbearing ligands.

Acknowledgment. The authors gratefully acknowledge support from the U.S. National Science Foundation (Grant No. CHE-9320478). We also thank Prof. Brian M. Hoffman (Northwestern University) for kindly sharing a preprint.

Supporting Information Available: Tables of crystallographic details, positional and thermal parameters, interatomic distances, and intramolecular angles for $[Mn^{III}TPP]^+[C_3(CN)_5]^{-*}xCH_2Cl_2$ and a cation and anion labeling diagram for $[Mn^{III}TPP]^+[C_3(CN)_5]^{-*}CH_2Cl_2$ (11 pages). Ordering information is given on any current masthead page.

IC9713893

⁽⁷⁾ Behere, D. V.; Mitra, S. Inorg. Chem. 1980, 19, 992.

^{(8) (}a) Goldberg, D. P.; Telser, J.; Krzystek, J.; Montalban, A. G.; Brunel, L.-C.; Barrett, A. G. M.; Hoffman, B. M. Submitted for publication. (b) Kennedy, B. J.; Murray, K. S. *Inorg. Chem.* **1985**, *24*, 1557. (c) Behere, D. V.; Marathe, V. R.; Mitra, S. *Chem. Phys. Lett.* **1981**, *81*, 57. (d) Dugad, L. B.; Behere, D. V.; Marathe, V. R.; Mitra, S. *Chem. Phys. Lett.* **1984**, *104*, 353.

⁽⁹⁾ Johnson, C. K. ORTEPII; Report ORNL-5138; Oak Ridge National Laboratory: Oak Ridge, TN, 1976.